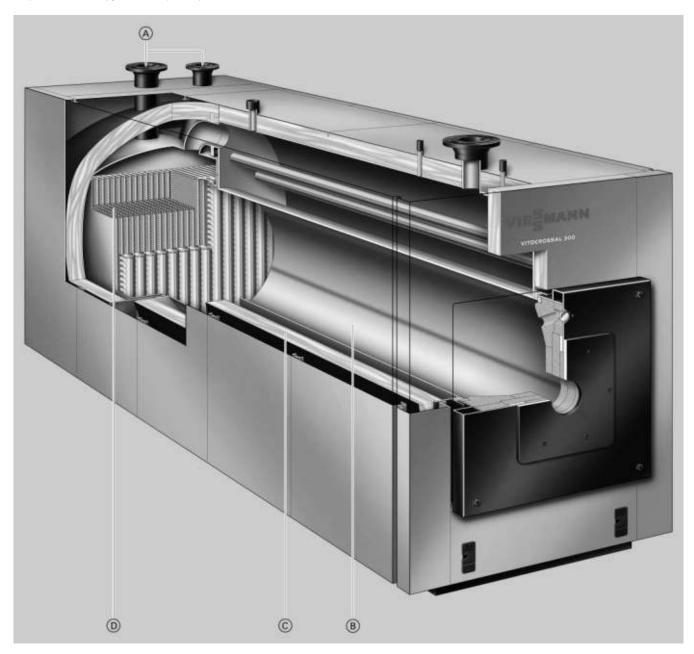


VITOCROSSAL 300

Газовые конденсационные котлы 787 - 1400 кВт

Технический паспорт

Номер заказа и цены: см. прайс-лист



VITOCROSSAL 300 Tun CR3B

Конденсационный котел для работы на природном и сжиженном газе

Основные преимущества

- Нормативный КПД: до 98% (H_s)/109% (H_i).
- Высокая эксплуатационная надежность и длительный срок службы благодаря использованию теплообменных поверхностей Inox-Crossal из высококачественной нержавеющей стали.
- Теплообменные поверхности Inox-Crossal обеспечивают интенсивный теплообмен и высокую скорость процесса конденсации.
- Гладкие самоочищающиеся теплообменные поверхности из специальной стали.
- Минимальный уровень выбросов вредных веществ при сжигании благодаря низкой теплонапряженности камеры сгорания и проходной конструкции камеры сгорания.
- Простота подачи на место установки благодаря раздельному секционному исполнению.
- Два патрубка обратной магистрали для гидравлической обвязки с оптимизацией теплоты конденсации.
- Простой в эксплуатации контроллер Vitotronic с индикацией текста и графики.

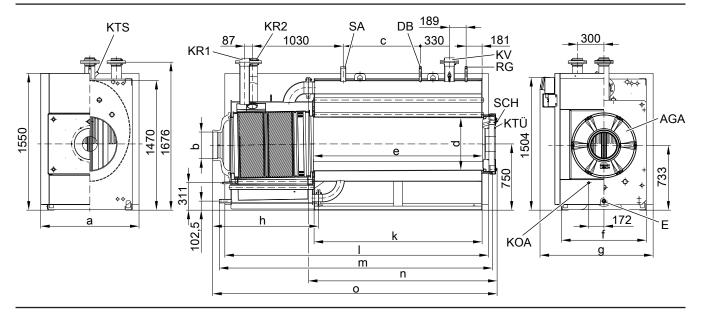
- Два патрубка обратной магистрали
- (B) (C) Камера сгорания из специальной нержавеющей стали
- Высокоэффективная теплоизоляция
- Теплообменные поверхности Inox-Crossal из специальной нержавеющей стали

Технические данные

Технические характеристики

Номинальная тепловая мощность Т _{под/} Т _{обР} = 50/30 °C	кВт	787	978	1100	1400
T _{ПОЛ} /T _{ОБР} = 80/60 °C	кВт	720	895	1006	1280
Номинальная тепловая нагрузка	кВт	742	923	1038	1320
Идентификатор изделия	KD1	172	CE-0085		1020
Допустимая рабочая температура	°C	100	100	100	100
Допустимая температура подачи	°C	110	110	110	110
(= температура срабатывания за-					
щитного ограничителя температу-					
ры)					
Допуст. рабочее давление	бар	6	6	6	6
Аэродинамическое сопротивле-	Па	420	420	460	480
ние	мбар	4,2	4,2	4,6	4,8
Размеры котлового блока					
Длина b	MM	2894	3094	3193	3543
Ширина с	MM	960	960	1200	1200
Высота (с патрубком)	MM	1676	1676	1676	1676
Размеры модулей					
Длина модуля камеры сгорания g	MM	1938	2138	2237	2587
Длина модуля теплообменника о	MM	1198	1198	1216	1216
Габаритные размеры					
Общая длина а	MM	3021	3221	3338	3688
Общая ширина теплоизоляции	MM	1114	1114	1296	1296
Общая ширина с контроллером f	MM	1281	1281	1463	1463
Общая высота	MM	1550	1550	1550	1550
Фундамент		3100	3350	3450	3900
Длина	MM	1200	1200	1350	1350
Ширина Масса	MM	1200	1200	1330	1330
- Модуль камеры сгорания	КГ	780	845	1060	1160
– модуль камеры сгорания – Модуль теплообменника	КГ	615	615	720	810
– модуль теплоооменника Общая масса	КГ	1553	1635	1980	2185
водогрейного котла с теплоизоля-	T.	1000	1000	1000	2100
цией и контроллером котлового кон-					
тура					
Объем котловой воды	Л	1407	1552	1558	1833
Патрубки водогрейного котла					
Подающая магистраль котла	PN 6 DN	100	100	125	125
Обратная магистраль котла 1 ^{*1}	PN 6 DN	100	100	125	125
Патрубок обратной магистрали 2 ^{*1}	PN 6 DN	100	100	100	100
Патрубок обратной магиотрали 2	R	2	2	2	2
Опорожнение	R	11/4	11/4	11/4	11/2
Конденсатоотводчик	R	1/2	1/2	1/2	1/2
Параметры уходящих газов ^{*2}		,-	,-	,-	
Температура (при темп. обр. маг.					
30 °C)	0.0	4.0	40	40	40
при ном. тепловой мощности	°C	40	40	40	40
– при частичной нагрузке Такта по дажения	°C	30	30	30	30
LORALIGNOTUNO LIDNA TOMO ONN	C	70	70	70	70
Температура (при темп. обр.		,			
маг. 60 °C)					
маг. 60 °C) Массовый расход (для природного					
маг. 60 °C) Массовый расход (для природного газа)	vr/u	1140	1/15	1640	2025
маг. 60 °C) Массовый расход (для природного	кг/ч кг/ч	1140 340	1415 425	1640 490	2025 605

VITOCROSSAL 300


^{*1} При подключении двух отопительных контуров отопительный контур с самым низким уровнем температуры подключить к патрубку обратной магистрали 1.

 $^{^{*2}}$ Расчетные значения для проектирования системы удаления продуктов сгорания по EN 13384 в расчете на содержание 10 % CO $_2$ при использовании природного газа.

Общие результаты измерения температуры уходящих газов при температуре воздуха для сжигания топлива 20 °C. В качестве параметров для частичной нагрузки приведены параметры для мощности в размере 30 % от номинальной тепловой мощности. При другой величине частичной нагрузки (в зависимости от режима работы горелки) следует соответствующим образом рассчитать массовый расход уходящих газов.

Технические данные (продолжение)

Номинальная тепловая мощност	ГЬ						
$T_{\Pi O J /} T_{O B P} = 50/30 \text{ °C}$	кВт	787	978	1100	1400		
$T_{\text{ПОД}}/T_{\text{OBP}} = 80/60 \text{ °C}$	кВт	720	895	1006	1280		
на патрубке уходящих газов ^{*3}	мбар	0,7	0,7	0,7	0,7		
Патрубок системы удаления про)- Ø мм	300	300	350	350		
дуктов сгорания							
Нормативный КПД							
при температуре отопи- 40/30 °	C %		до 98 (Н	_s)/109 (H _i)			
тельной системы							
75/60 °	C %		до 95 (H _s)/106 (H _i)				
Потери на поддерж. готовности	q _{B,} %	0,25	0,25	0,25	0,25		
70							

AGA Выход уходящих газов

DB Муфта Rp ½ для устройства ограничения давления

Е Патрубок опорожнения R 11/4

КОА Конденсатоотводчик R ½

KR 1 Обратная магистраль котла 1

KR 2 Обратная магистраль котла 2

KTS Датчик температуры котла Rp ¾

КТÜ Дверца котла

KV Подающая магистраль котла

RG Муфта Rp ½ для дополнительных регулирующих

устройств

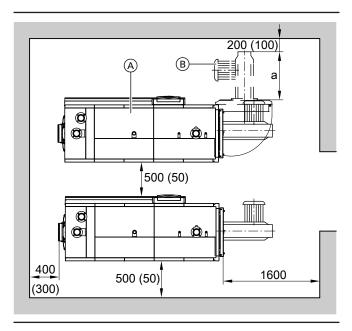
SA Патрубок аварийной линии R 2

SCH Смотровое отверстие

Таблица размеров

Номинальная тепло-	кВт	787	978	1100	1400
вая мощность					
a	MM	1114	1114	1296	1296
b	MM	302	302	352	352
С	MM	673	873	972	1322
d	MM	590	590	669	669
е	MM	1726	1926	2025	2375
f	MM	960	960	1200	1200
g	MM	1281	1281	1463	1463
h	MM	1198	1198	1216	1216
k	MM	1703	1903	2002	2352
1	MM	2785	2985	3085	3435
m	MM	2894	3094	3193	3543
n	MM	1938	2138	2237	2587
0	MM	3021	3221	3338	3688

При затруднениях с подачей котла на место установки можно снять дверцу котла и крышку коллектора уходящих газов.


При расхождении параметров обеспечиваемого напора необходимо проконсультироваться с поставщиком горелки. При подсоединении котла Vitocrossal 300 к влагонепроницаемым дымовым трубам напор на входе дымовой трубы должен составлять не более 0 Па.

^{*3} Показатели обеспечиваемого напора достигаются с использованием газовых вентиляторных горелок (производства Weishaupt и Elco), а также многих других вентиляторных газовых горелок.

Технические данные (продолжение)

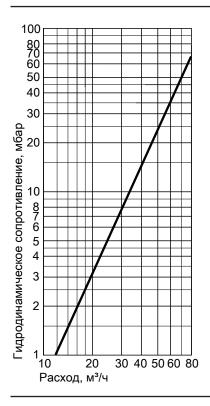
Монтаж

Минимальные расстояния

Размер а: Конструктивная длина горелки

(A) (B) Водогрейный котел

Горелка


Для обеспечения простого монтажа и техобслуживания должны быть соблюдены указанные размеры; при ограниченном пространстве для монтажа достаточно выдержать минимальные расстояния (указанные в скобках). В состоянии при поставке дверца котла установлена с поворотом вправо. Шарнирные болты могут быть переставлены таким образом, чтобы дверца котла открывалась влево.

Монтаж

- Не допускается загрязнение воздуха галогенсодержащими углеводородами (содержатся, например, в аэрозолях, красках, растворителях и чистящих средствах)
- Избегать сильной степени запыления.
- Не допускать высокой влажности воздуха.
- Обеспечить защиту от замерзания и надлежащую вентиляцию. При несоблюдении этих требований возможны сбои и повреждения установки.

В помещениях, в которых возможно загрязнение воздуха галогеносодержащими углеводородами, водогрейный котел можно устанавливать только при условии, что приняты достаточные меры для поступления незагрязненного воздуха для сжигания топлива.

Гидродинамическое сопротивление

Водогрейный котел Vitocrossal 300 пригоден только для систем водяного отопления с принудительной циркуляцией.

Состояние при поставке

Комплект поставки:

- Котловой блок с теплоизоляцией (камера сгорания и модуль теплообменника поставляются только раздельно)
- Контроллер котлового контура, кабельные подключения смонтированы
- Дверца котла с плитой горелки

- Контрфланцы с винтами и уплотнениями
- Патрубок для подключения предохранительных устройств дополнительной проставки подающей магистрали не требуется

Варианты контроллеров

Для однокотловой установки:

■ Без шкафа управления Vitocontrol

Vitotronic 100 (тип GC1B)

Для режима работы с постоянной температурой подающей магистрали или режима погодозависимой теплогенерации в сочетании со шкафом управления (см. ниже) или внешним контроллером.

Vitotronic 200 (тип GW1B)

Для переменной температуры котловой воды,

без управления смесителем

Vitotronic 300 (тип GW2B)

Для переменной температуры котловой воды, с управлением смесителем для максимум 2 отопительных контуров со смесителем

■ Co шкафом управления Vitocontrol

Vitotronic 100 (тип GC1B)

и

шкаф управления Vitocontrol с Vitotronic 300-K (тип MW1B) для режима погодозависимой теплогенерации и управления смесителем для максимум 2 отопительных контуров со смесителем и дополнительными Vitotronic 200-H, тип HK1B или HK3B, для 1 - 3 отопительных контуров со смесителем или

шкаф управления с внешним контроллером (предоставляется заказчиком)

Для многокотловой установки:

(до 4 водогрейных котлов)

■ Без шкафа управления Vitocontrol

Vitotronic 100 (тип GC1B) и телекоммуникационный модуль LON в сочетании с Vitotronic 300-K (тип MW1B)

Для переменной температуры котловой воды (один водогрейный котел поставляется с базовым регулировочным оснащением для многокотловой установки)

Vitotronic 100 (тип GC1B) и модуль LON для режима программируемой и погодозависимой теплогенерации с переменной температурой котловой воды

для каждого последующего водогрейного котла многокотловой установки

■ Со шкафом управления Vitocontrol

Vitotronic 100 (тип GC1B) и модуль LON для режима программируемой и погодозависимой теплогенерации с переменной температурой котловой воды

для каждого водогрейного котла многокотловой установки и

шкаф управления Vitocontrol c Vitotronic 300-K (тип MW1B) для многокотловой установки, для режима погодозависимой теплогенерации и управления смесителем для максимум 2 отопительных контуров со смесителем и дополнительными Vitotronic 200-H, тип HK1B или HK3B, для 1 - 3 отопительных контуров со смесителем

или

шкаф управления с внешним контроллером (предоставляется заказчиком)

Принадлежности для водогрейного котла

См. прайс-лист и технический паспорт "Принадлежности для водогрейного котла".

Условия эксплуатации

Условия эксплуатации с контроллерами котлового контура Vitotronic

Требования к качеству воды см. в инструкции по проектированию

"Нормативные показатели качества воды".

	Требования
1. Объемный расход теплоносителя	нет
2. Температура обратной магистрали котла (минимальное значение)	нет
3. Минимальная температура котловой воды	нет
4. Минимальная температура котловой воды при защите от замерзания	10 °C – обеспечивается контроллером Viessmann
5. Двухступенчатый режим работы горелки	нет
6. Модулируемый режим работы горелки	нет
7. Пониженный режим	нет – возможно полное снижение
8. Снижение температуры на выходные дни	нет – возможно полное снижение

Указания по проектированию

Монтаж при режиме эксплуатации с забором воздуха для горения из помещения установки

(B₂₃, B₃₃)

Для отопительных установок общей номинальной тепловой мощностью более 50 кВт с отбором воздуха для горения из помещения установки подача воздуха для сжигания топлива считается обеспеченной только при условии, если отопительные установки смонтированы в помещениях с отверстием или воздуховодом, выходящим в атмосферу.

Поперечное сечение отверстия должно составлять минимум 150 см² и на каждый кВт, превышающий номинальную тепловую мощность 50 кВт, иметь дополнительные 2 см².

Размеры воздуховодов должны выбираться в соответствии с аэродинамическими требованиями. Необходимое поперечное сечение разрешается распределять максимум на два отверстия или воздуховодов.

Нейтрализация

В процессе конденсации выпадает кислый конденсат с показателями pH от 3 до 4. Этот конденсат можно нейтрализовать нейтрализующим средством в установке для нейтрализации конденсата.

Дополнительные сведения см. в инструкции по проектированию и в техническом паспорте "Принадлежности для водогрейных котпов"

Монтаж соответствующей горелки

Горелка должна соответствовать номинальной тепловой мощности и аэродинамическому сопротивлению водогрейного котла (см. технические данные изготовителя горелки).

Материал пламенной головы горелки должен выдерживать рабочие температуры не менее 500 °C.

Длина жаровой трубы горелки должна составлять не менее 135 мм.

Горелка должна пройти испытания по EN 676 и иметь маркировку CE согласно директиве 90/396/EЭC.

Настройка горелки

Отрегулировать расход газа горелки в соответствии с указанной номинальной тепловой мощностью водогрейного котла.

Подключение горелки

Отверстие ввода жаровой трубы горелки соответствует FN 303-1

Для монтажа горелки использовать входящую в комплект поставки дополнительную плиту горелки.

В том случае, если она не подготовлена на заводе-изготовителе, следует просверлить крепежные отверстия горелки во фланце горелки и выжечь отверстие ввода трубы горелки.

Максимальный диаметр отверстия для жаровой трубы горелки составляет 350 мм.

При других размерах расширить вырез в теплоизоляции дверцы котла в соответствии с диаметром жаровой трубы горелки. После монтажа горелки уплотнить кольцевой зазор между жаровой трубой горелки и теплоизоляционным блоком, используя имеющийся в комплекте поставки жаростойкий теплоизоляционный материал.

Жаровая труба горелки должна выступать из теплоизоляции дверцы котла.

Прочие указания по проектированию

См. инструкцию по проектированию для этого водогрейного котпа

Проверенное качество

Знак СЕ в соответствии с действующими директивами Европейского Союза.

Знак качества ÖVGW в соответствии с Положением о знаках качества 1942 DRGBI. І для газовых и водяных приборов.

УНИТЕХ БАУ 03110 Украина, г. Киев ул. А. Пироговского, 19 корп. 4 Тел/факс: (044)270-38-24 (044)270-38-25 office@bau.kiev.ua